Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Mol Diagn ; 23(9): 1085-1096, 2021 09.
Article in English | MEDLINE | ID: covidwho-1370607

ABSTRACT

Widespread high-throughput testing for identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by RT-PCR has been a foundation in the response to the coronavirus disease 2019 (COVID-19) pandemic. Quality assurance metrics for these RT-PCR tests are still evolving as testing is widely implemented. As testing increases, it is important to understand performance characteristics and the errors associated with these tests. Herein, we investigate a high-throughput, laboratory-developed SARS-CoV-2 RT-PCR assay to determine whether modeling can generate quality control metrics that identify false-positive (FP) results due to contamination. This study reviewed repeated clinical samples focusing on positive samples that test negative on re-extraction and PCR, likely representing false positives. To identify and predict false-positive samples, we constructed machine learning-derived models based on the extraction method used. These models identified variables associated with false-positive results across all methods, with sensitivities for predicting FP results ranging between 67% and 100%. Application of the models to all results predicted a total FP rate of 0.08% across all samples, or 2.3% of positive results, similar to reports for other RT-PCR tests for RNA viruses. These models can predict quality control parameters, enabling laboratories to generate decision trees that reduce interpretation errors, allow for automated reflex testing of samples with a high FP probability, improve workflow efficiency, and increase diagnostic accuracy for patient care.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/methods , Automation, Laboratory , Carrier State/virology , Decision Support Systems, Clinical , False Positive Reactions , High-Throughput Nucleotide Sequencing/methods , Humans , Machine Learning , SARS-CoV-2/genetics , Viral Load , Workflow
2.
Microbiol Spectr ; 9(1): e0008621, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1309808

ABSTRACT

Although nasopharyngeal samples have been considered the gold standard for COVID-19 testing, variability in viral load across different anatomical sites could cause nasopharyngeal samples to be less sensitive than saliva or nasal samples in certain cases. Self-collected samples have logistical advantages over nasopharyngeal samples, making them amenable to population-scale screening. To evaluate sampling alternatives for population screening, we collected nasopharyngeal, saliva, and nasal samples from two cohorts with varied levels and types of symptoms. In a mixed cohort of 60 symptomatic and asymptomatic participants, we found that saliva had 88% concordance with nasopharyngeal samples when tested in the same testing lab (n = 41) and 68% concordance when tested in different testing labs (n = 19). In a second cohort of 20 participants hospitalized for COVID-19, saliva had 74% concordance with nasopharyngeal samples tested in the same testing lab but detected virus in two participants that tested negative with nasopharyngeal samples on the same day. Medical record review showed that the saliva-based testing sensitivity was related to the timing of symptom onset and disease stage. We find that no sample site will be perfectly sensitive for COVID-19 testing in all situations, and the significance of negative results will always need to be determined in the context of clinical signs and symptoms. Saliva retained high clinical sensitivity for early-stage and presymptomatic COVID-19 while allowing easier collection, minimizing the exposure of health care workers, and need for personal protective equipment and making it a viable option for population-scale testing. IMPORTANCE Methods for COVID-19 detection are necessary for public health efforts to monitor the spread of disease. Nasopharyngeal samples have been considered the best approach for COVID-19 testing. However, alternative samples like self-collected saliva offer advantages for population-scale screening. Meta-analyses of recent studies suggest that saliva is useful for detecting SARS-CoV-2; however, differences in disease prevalence, sample collection, and analysis methods still confound strong conclusions on the utility of saliva compared to nasopharyngeal samples. Here, we find that the sensitivity of saliva testing is related to both the timing of the sample collection relative to symptom onset and the disease stage. Importantly, several clinical vignettes in our cohorts highlight the challenges of medical decision making with limited knowledge of the associations between laboratory test data and the natural biology of infection.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Saliva/virology , Adult , Aged , Aged, 80 and over , Asymptomatic Diseases , COVID-19/virology , Cohort Studies , Diagnostic Tests, Routine/instrumentation , Diagnostic Tests, Routine/methods , Female , Humans , Male , Middle Aged , Nasopharynx/virology , SARS-CoV-2/genetics , Young Adult
3.
BMC Genomics ; 21(1): 863, 2020 Dec 04.
Article in English | MEDLINE | ID: covidwho-958027

ABSTRACT

BACKGROUND: The global COVID-19 pandemic has led to an urgent need for scalable methods for clinical diagnostics and viral tracking. Next generation sequencing technologies have enabled large-scale genomic surveillance of SARS-CoV-2 as thousands of isolates are being sequenced around the world and deposited in public data repositories. A number of methods using both short- and long-read technologies are currently being applied for SARS-CoV-2 sequencing, including amplicon approaches, metagenomic methods, and sequence capture or enrichment methods. Given the small genome size, the ability to sequence SARS-CoV-2 at scale is limited by the cost and labor associated with making sequencing libraries. RESULTS: Here we describe a low-cost, streamlined, all amplicon-based method for sequencing SARS-CoV-2, which bypasses costly and time-consuming library preparation steps. We benchmark this tailed amplicon method against both the ARTIC amplicon protocol and sequence capture approaches and show that an optimized tailed amplicon approach achieves comparable amplicon balance, coverage metrics, and variant calls to the ARTIC v3 approach. CONCLUSIONS: The tailed amplicon method we describe represents a cost-effective and highly scalable method for SARS-CoV-2 sequencing.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/virology , Genome, Viral/genetics , SARS-CoV-2/genetics , Benchmarking , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing/standards , Humans , Molecular Epidemiology , Mutation , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , Sequence Analysis/methods , Sequence Analysis/standards
4.
bioRxiv ; 2020 Oct 19.
Article in English | MEDLINE | ID: covidwho-900763

ABSTRACT

The human airway epithelium is the initial site of SARS-CoV-2 infection. We used flow cytometry and single cell RNA-sequencing to understand how the heterogeneity of this diverse cell population contributes to elements of viral tropism and pathogenesis, antiviral immunity, and treatment response to remdesivir. We found that, while a variety of epithelial cell types are susceptible to infection, ciliated cells are the predominant cell target of SARS-CoV-2. The host protease TMPRSS2 was required for infection of these cells. Importantly, remdesivir treatment effectively inhibited viral replication across cell types, and blunted hyperinflammatory responses. Induction of interferon responses within infected cells was rare and there was significant heterogeneity in the antiviral gene signatures, varying with the burden of infection in each cell. We also found that heavily infected secretory cells expressed abundant IL-6, a potential mediator of COVID-19 pathogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL